Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Article in English | MEDLINE | ID: covidwho-2316940

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.


Subject(s)
COVID-19 , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 4 , Toll-Like Receptor 3 , Toll-Like Receptor 7 , SARS-CoV-2 , Toll-Like Receptors , Cytokines , Immunity, Innate
2.
J Infect Public Health ; 16(5): 736-740, 2023 May.
Article in English | MEDLINE | ID: covidwho-2279561

ABSTRACT

INTRODUCTION: Although the potential role of inanimate surfaces in SARS-CoV-2 transmission has yet to be adequately assessed, it is still routine practice to apply deep and expensive environmental disinfection protocols. The aim of this study was to verify the presence of viable virus on different surfaces exposed to droplets released by coughing in SARS-CoV-2 RNA positive patients. METHODS: Patients admitted to hospital with a positive SARS-CoV-2 real-time (RT)-PCR swab were asked to cough on steel, cardboard, plastic and their hands. Surfaces were tested at baseline (T0) and at different timepoints thereafter using swabs dipped in medium, and quickly seeded on VERO E6 cells that were checked every other day for cytopathic effect (CPE). Laboratory-propagated SARS-CoV-2 strains were examined at the same time points and on identical materials. RESULTS: Ten RNA-positive patients were enrolled into the study. The median cycle threshold value was 20.7 (range 13-28.3). Nasopharyngeal swabs from 3 of the patients yielded viable virus 2-10 days post-inoculation. However, in none of the patients was it possible to isolate viable SARS-CoV-2 from sputum under identical experimental conditions. A CPE was instead already visible using laboratory-propagated SARS-CoV-2 strains at 20', 60', 180' while an effect at 24 h required a 6-day incubation. CONCLUSION: The evidence emerging from this real-life study suggests that droplets delivered by SARS-CoV-2 infected patients on common inanimate surfaces did not contain viable virus. In contrast, and in line with several laboratory-based experiments, in vitro adapted viruses could survive and grow on the same fomites.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Fomites , Hospitals
3.
J Hepatol ; 77(4): 1161-1197, 2022 10.
Article in English | MEDLINE | ID: covidwho-1936777

ABSTRACT

The COVID-19 pandemic has presented a serious challenge to the hepatology community, particularly healthcare professionals and patients. While the rapid development of safe and effective vaccines and treatments has improved the clinical landscape, the emergence of the omicron variant has presented new challenges. Thus, it is timely that the European Association for the Study of the Liver provides a summary of the latest data on the impact of COVID-19 on the liver and issues guidance on the care of patients with chronic liver disease, hepatobiliary cancer, and previous liver transplantation, as the world continues to deal with the consequences of the COVID-19 pandemic.


Subject(s)
COVID-19 , Liver Diseases , Liver Transplantation , Neoplasms , Humans , Liver Diseases/epidemiology , Liver Diseases/surgery , Pandemics , SARS-CoV-2
4.
Int J Mol Sci ; 23(13)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911405

ABSTRACT

We assessed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in samples from 89 acute COVID-19 patients, utilizing blood samples collected during the first wave of COVID-19 in Italy. The goal of the study was to examine correlations between SARS-CoV-2-specific T cell responses in the early phase comparing mild, moderate, or severe COVID-19 disease outcomes. T cell responses to the spike (S) and non-S proteins were measured in a combined activation-induced marker (AIM) and intracellular cytokine staining (ICS) assay. Early CD4+ T cell responses to SARS-CoV-2 S correlated with milder disease by both AIM and IFNγ ICS readouts. The correlation of S-specific CD4+ T cell responses with milder disease severity was most striking within the first two weeks of symptom onset compared to later time points. Furthermore, donors with milder disease were associated with polyantigenic CD4+ T cell responses that recognized more prominently non-S proteins in addition to S, while severe acute COVID-19 was characterized by lower magnitudes of CD4+ T cell responses and a narrower repertoire. In conclusion, this study highlights that both the magnitude and breadth of early SARS-CoV-2-specific CD4+ T cell responses correlated with milder disease outcomes in acute COVID-19 patients.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Italy , SARS-CoV-2
5.
J Infect Dis ; 225(10): 1685-1687, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1758752
6.
Autophagy ; 18(7): 1662-1672, 2022 07.
Article in English | MEDLINE | ID: covidwho-1585354

ABSTRACT

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor.


Subject(s)
COVID-19 , Toll-Like Receptor 3 , Autophagy/genetics , Biomarkers , COVID-19/genetics , HEK293 Cells , Humans , Hydroxychloroquine/therapeutic use , Male , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severity of Illness Index , Toll-Like Receptor 3/genetics
7.
Genes Immun ; 23(1): 51-56, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585868

ABSTRACT

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Cytokines/metabolism , Down-Regulation , Humans , Leukocytes, Mononuclear/metabolism , Male , SARS-CoV-2 , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism
8.
Front Immunol ; 12: 748881, 2021.
Article in English | MEDLINE | ID: covidwho-1551504

ABSTRACT

Olfactory and taste disorders (OTD) are commonly found as presenting symptoms of SARS-CoV-2 infection in patients with clinically mild COVID-19. Virus-specific T cells are thought to play an important role in the clearance of SARS-CoV-2; therefore the study of T cell specific immune responses in patients with mild symptoms may help to understand their possible role in protection from severe disease. We evaluated SARS-CoV-2-specific T cell responses to four different peptide megapools covering all SARS-CoV-2 proteins during the acute phase of the disease in 33 individuals with mild or no other symptom beside OTD and in 22 age-matched patients with severe infection. A control group of 15 outpatients with OTD and consistently negative nasopharyngeal SARS-CoV-2 RNA swabs and virus-specific IgG serology was included in the study. Increased frequencies of virus-specific CD4+ and CD8+ T cells were found in SARS-CoV-2 positive patients with OTD compared with those with severe COVID-19 and with SARS-CoV-2 negative OTD individuals. Moreover, enhanced CD4+ and CD8+ T-cell activation induced by SARS-CoV-2 peptides was associated with higher interferon (IFN)γ production. Increased frequencies of Spike (S1/S2)-specific CD4+ T cells showing enhanced IFNγ secretion and granzyme B content were associated with serum spike-specific IgG in the OTD group. In conclusion, patients with SARS-CoV-2 induced OTD develop highly functional virus-specific CD4+ and CD8+ T cells during the symptomatic phase of the disease, suggesting that robust and coordinated T-cell responses provide protection against extension of COVID-19 to the lower respiratory tract.


Subject(s)
Ageusia/pathology , Anosmia/pathology , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/immunology , COVID-19/pathology , Cytokines/blood , Humans , Interferon-gamma/blood , Interferon-gamma/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Lancet Infect Dis ; 21(5): e112, 2021 05.
Article in English | MEDLINE | ID: covidwho-1510459

Subject(s)
COVID-19 , SARS-CoV-2 , Fomites , Humans , Risk
11.
Elife ; 102021 03 02.
Article in English | MEDLINE | ID: covidwho-1112866

ABSTRACT

Background: Recently, loss-of-function variants in TLR7 were identified in two families in which COVID-19 segregates like an X-linked recessive disorder environmentally conditioned by SARS-CoV-2. We investigated whether the two families represent the tip of the iceberg of a subset of COVID-19 male patients. Methods: This is a nested case-control study in which we compared male participants with extreme phenotype selected from the Italian GEN-COVID cohort of SARS-CoV-2-infected participants (<60 y, 79 severe cases versus 77 control cases). We applied the LASSO Logistic Regression analysis, considering only rare variants on young male subsets with extreme phenotype, picking up TLR7 as the most important susceptibility gene. Results: Overall, we found TLR7 deleterious variants in 2.1% of severely affected males and in none of the asymptomatic participants. The functional gene expression profile analysis demonstrated a reduction in TLR7-related gene expression in patients compared with controls demonstrating an impairment in type I and II IFN responses. Conclusions: Young males with TLR7 loss-of-function variants and severe COVID-19 represent a subset of male patients contributing to disease susceptibility in up to 2% of severe COVID-19. Funding: Funded by private donors for the Host Genetics Research Project, the Intesa San Paolo for 2020 charity fund, and the Host Genetics Initiative. Clinical trial number: NCT04549831.


Subject(s)
COVID-19/genetics , Polymorphism, Single Nucleotide , Toll-Like Receptor 7/genetics , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index
12.
Cell Mol Immunol ; 18(3): 604-612, 2021 03.
Article in English | MEDLINE | ID: covidwho-872685

ABSTRACT

The relationship between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host immunity is poorly understood. We performed an extensive analysis of immune responses in 32 patients with severe COVID-19, some of whom succumbed. A control population of healthy subjects was included. Patients with COVID-19 had an altered distribution of peripheral blood lymphocytes, with an increased proportion of mature natural killer (NK) cells and low T-cell numbers. NK cells and CD8+ T cells overexpressed T-cell immunoglobulin and mucin domain-3 (TIM-3) and CD69. NK cell exhaustion was attested by increased frequencies of programmed cell death protein 1 (PD-1) positive cells and reduced frequencies of natural killer group 2 member D (NKG2D)-, DNAX accessory molecule-1 (DNAM-1)- and sialic acid-binding Ig-like lectin 7 (Siglec-7)-expressing NK cells, associated with a reduced ability to secrete interferon (IFN)γ. Patients with poor outcome showed a contraction of immature CD56bright and an expansion of mature CD57+ FcεRIγneg adaptive NK cells compared to survivors. Increased serum levels of IL-6 were also more frequently identified in deceased patients compared to survivors. Of note, monocytes secreted abundant quantities of IL-6, IL-8, and IL-1ß which persisted at lower levels several weeks after recovery with concomitant normalization of CD69, PD-1 and TIM-3 expression and restoration of CD8+ T cell numbers. A hyperactivated/exhausted immune response dominate in severe SARS-CoV-2 infection, probably driven by an uncontrolled secretion of inflammatory cytokines by monocytes. These findings unveil a unique immunological profile in COVID-19 patients that will help to design effective stage-specific treatments for this potentially deadly disease.


Subject(s)
Antigens, Differentiation/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Killer Cells, Natural/pathology , Male , Middle Aged , Severity of Illness Index
14.
Nutr Metab Cardiovasc Dis ; 30(11): 1920-1925, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-704568

ABSTRACT

BACKGROUND AND AIMS: Obesity has been suggested as a possible risk factor for a more severe course of COVID-19; however, conclusive evidence is lacking and few studies have investigated the role of BMI as a risk factor for admission to intensive care unit (ICU) and mortality. We retrospectively analyzed a COVID-19 cohort recruited during the first 40 days of the epidemic in Italy. We examined the association between obesity and 30-day mortality, admission to ICU, mortality and length of hospital stay in patients with COVID-19. METHODS AND RESULTS: Demographic, clinical and outcome data were retrospectively analyzed in 331 patients with COVID-19 admitted to hospital between 21 February and 31 March 2020. The predictive effect of obesity on mortality was assessed using a Cox proportional-hazard regression model, its effect on ICU admission and mortality in the ICU using logistic regressions, and its effect on length of hospital stay using a linear regression. Seventy-four of 331 patients had a BMI ≥30 kg/m2. Among obese patients, 21 (28.4%) required admission in ICU and 25 died (33.8%). After controlling for sex, age, comorbidities and clinical data, obesity was not significantly associated with mortality, mortality in ICU and length of hospital stay. The effect of obesity on ICU admission remained significant after controlling for sex, age, interstitial lung disease, heart disease and serum C-reactive protein. CONCLUSIONS: Obese patients with COVID-19 were more likely to be admitted to ICU than non-obese patients. However, there were no significant differences in mortality between the two groups.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/mortality , Obesity/complications , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , C-Reactive Protein/analysis , COVID-19 , Female , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Pandemics , Proportional Hazards Models , Registries , Retrospective Studies , SARS-CoV-2
15.
JHEP Rep ; 2(5): 100169, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-692979

ABSTRACT

During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, EASL and ESCMID published a position paper to provide guidance for physicians involved in the care of patients with chronic liver disease. While some healthcare systems are returning to a more normal routine, many countries and healthcare systems have been, or still are, overwhelmed by the pandemic, which is significantly impacting on the care of these patients. In addition, many studies have been published focusing on how COVID-19 may affect the liver and how pre-existing liver diseases might influence the clinical course of COVID-19. While many aspects remain poorly understood, it has become increasingly evident that pre-existing liver diseases and liver injury during the disease course must be kept in mind when caring for patients with COVID-19. This review should serve as an update on the previous position paper, summarising the evidence for liver disease involvement during COVID-19 and providing recommendations on how to return to routine care wherever possible.

16.
JHEP Rep ; 2(3): 100113, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-27267

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic poses an enormous challenge to healthcare systems in affected communities. Older patients and those with pre-existing medical conditions have been identified as populations at risk of a severe disease course. It remains unclear at this point to what extent chronic liver diseases should be considered as risk factors, due to a shortage of appropriate studies. However, patients with advanced liver disease and those after liver transplantation represent vulnerable patient cohorts with an increased risk of infection and/or a severe course of COVID-19. In addition, the current pandemic requires unusual allocation of healthcare resources which may negatively impact the care of patients with chronic liver disease that continue to require medical attention. Thus, the challenge hepatologists are facing is to promote telemedicine in the outpatient setting, prioritise outpatient contacts, avoid nosocomial dissemination of the virus to patients and healthcare providers, and at the same time maintain standard care for patients who require immediate medical attention.

SELECTION OF CITATIONS
SEARCH DETAIL